New algorithms for convex cost tension problem with application to computer vision
نویسندگان
چکیده
Motivated by various applications to computer vision, we consider the convex cost tension problem, which is the dual of the convex cost flow problem. In this paper, we first propose a primal algorithm for computing an optimal solution of the problem. Our primal algorithm iteratively updates primal variables by solving associated minimum cut problems. We show that the time complexity of the primal algorithm is O(K · T (n, m)), where K is the range of primal variables and T (n, m) is the time needed to compute a minimum cut in a graph with n nodes and m edges. We then develop an improved version of the primal algorithm, called the primal-dual algorithm, by making good use of dual variables in addition to primal variables. Although its time complexity is the same as that of the primal algorithm, we can expect a better performance in practice. We finally consider an application to a computer vision problem called the panoramic image stitching.
منابع مشابه
New Algorithms for the Dual of the Convex Cost Network Flow Problem with Application to Computer Vision
Motivated by various applications to computer vision, we consider an integer convex optimization problem which is the dual of the convex cost network flow problem. In this paper, we first propose a new primal algorithm for computing an optimal solution of the problem. Our primal algorithm iteratively updates primal variables by solving associated minimum cut problems. The main contribution in t...
متن کاملOptimizing Cost Function in Imperialist Competitive Algorithm for Path Coverage Problem in Software Testing
Search-based optimization methods have been used for software engineering activities such as software testing. In the field of software testing, search-based test data generation refers to application of meta-heuristic optimization methods to generate test data that cover the code space of a program. Automatic test data generation that can cover all the paths of software is known as a major cha...
متن کاملSoftware Cost Estimation by a New Hybrid Model of Particle Swarm Optimization and K-Nearest Neighbor Algorithms
A successful software should be finalized with determined and predetermined cost and time. Software is a production which its approximate cost is expert workforce and professionals. The most important and approximate software cost estimation (SCE) is related to the trained workforce. Creative nature of software projects and its abstract nature make extremely cost and time of projects difficult ...
متن کاملParticle Swarm Optimization with Smart Inertia Factor for Combined Heat and Power Economic Dispatch
In this paper particle swarm optimization with smart inertia factor (PSO-SIF) algorithm is proposed to solve combined heat and power economic dispatch (CHPED) problem. The CHPED problem is one of the most important problems in power systems and is a challenging non-convex and non-linear optimization problem. The aim of solving CHPED problem is to determine optimal heat and power of generating u...
متن کاملA Projected Alternating Least square Approach for Computation of Nonnegative Matrix Factorization
Nonnegative matrix factorization (NMF) is a common method in data mining that have been used in different applications as a dimension reduction, classification or clustering method. Methods in alternating least square (ALS) approach usually used to solve this non-convex minimization problem. At each step of ALS algorithms two convex least square problems should be solved, which causes high com...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Optimization
دوره 6 شماره
صفحات -
تاریخ انتشار 2009